Statistics Is Easy: Case Studies On Real Scientific Datasets (Synthesis Lectures On Mathematics & Statistics)

Springer
SKU:
9783031013058
|
ISBN13:
9783031013058
$28.37
(No reviews yet)
Condition:
New
Usually Ships in 24hrs
Current Stock:
Estimated Delivery by: | Fastest delivery by:
Adding to cart… The item has been added
Buy ebook
Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.


  • | Author: Manpreet Singh Katari, Sudarshini Tyagi, Dennis Shasha
  • | Publisher: Springer
  • | Publication Date: Apr 08, 2021
  • | Number of Pages: 73 pages
  • | Language: English
  • | Binding: Paperback
  • | ISBN-10: 3031013050
  • | ISBN-13: 9783031013058
Author:
Manpreet Singh Katari, Sudarshini Tyagi, Dennis Shasha
Publisher:
Springer
Publication Date:
Apr 08, 2021
Number of pages:
73 pages
Language:
English
Binding:
Paperback
ISBN-10:
3031013050
ISBN-13:
9783031013058