Analysis of Incidence Rates (Chapman & Hall/CRC Biostatistics Series)

Chapman and Hall/CRC
SKU:
9780367152062
|
ISBN13:
9780367152062
$188.49
(No reviews yet)
Condition:
New
Usually Ships in 24hrs
Current Stock:
Estimated Delivery by: | Fastest delivery by:
Adding to cart… The item has been added
Buy ebook
Incidence rates are counts divided by person-time; mortality rates are a well-known example. Analysis of Incidence Ratesoffers a detailed discussion of the practical aspects of analyzing incidence rates. Important pitfalls and areas of controversy are discussed. The text is aimed at graduate students, researchers, and analysts in the disciplines of epidemiology, biostatistics, social sciences, economics, and psychology. Features: Compares and contrasts incidence rates with risks, odds, and hazards. Shows stratified methods, including standardization, inverse-variance weighting, and Mantel-Haenszel methods Describes Poisson regression methods for adjusted rate ratios and rate differences. Examines linear regression for rate differences with an emphasis on common problems. Gives methods for correcting confidence intervals. Illustrates problems related to collapsibility. Explores extensions of count models for rates, including negative binomial regression, methods for clustered data, and the analysis of longitudinal data. Also, reviews controversies and limitations. Presents matched cohort methods in detail. Gives marginal methods for converting adjusted rate ratios to rate differences, and vice versa. Demonstrates instrumental variable methods. Compares Poisson regression with the Cox proportional hazards model. Also, introduces Royston-Parmar models. All data and analyses are in online Stata files which readers can download. Peter Cummingsis Professor Emeritus, Department of Epidemiology, School of Public Health, University of Washington, Seattle WA. His research was primarily in the field of injuries. He used matched cohort methods to estimate how the use of seat belts and presence of airbags were related to death in a traffic crash. He is author or co-author of over 100 peer-reviewed articles. n emphasis on common problems. Gives methods for correcting confidence intervals. Illustrates problems related to collapsibility. Explores extensions of count models for rates, including negative binomial regression, methods for clustered data, and the analysis of longitudinal data. Also, reviews controversies and limitations. Presents matched cohort methods in detail. Gives marginal methods for converting adjusted rate ratios to rate differences, and vice versa. Demonstrates instrumental variable methods. Compares Poisson regression with the Cox proportional hazards model. Also, introduces Royston-Parmar models. All data and analyses are in online Stata files which readers can download. Peter Cummingsis Professor Emeritus, Department of Epidemiology, School of Public Health, University of Washington, Seattle WA. His research was primarily in the field of injuries. He used matched cohort methods to estimate how the use of seat belts and presence of airbags were related to death in a traffic crash. He is author or co-author of over 100 peer-reviewed articles. All data and analyses are in online Stata files which readers can download. Peter Cummingsis Professor Emeritus, Department of Epidemiology, School of Public Health, University of Washington, Seattle WA. His research was primarily in the field of injuries. He used matched cohort methods to estimate how the use of seat belts and presence of airbags were related to death in a traffic crash. He is author or co-author of over 100 peer-reviewed articles.
  • | Author: Peter Cummings
  • | Publisher: Chapman And Hall/Crc
  • | Publication Date: Apr 15, 2019
  • | Number of Pages: 492 pages
  • | Language: English
  • | Binding: Hardcover
  • | ISBN-10: 0367152061
  • | ISBN-13: 9780367152062
Author:
Peter Cummings
Publisher:
Chapman And Hall/Crc
Publication Date:
Apr 15, 2019
Number of pages:
492 pages
Language:
English
Binding:
Hardcover
ISBN-10:
0367152061
ISBN-13:
9780367152062